
Escape from auto-manual testing! 
a poster by Zac Hatfield-Dodds (zac@hypothesis.works) 

Why generate tests? 
Hand-written unit tests are good at catching 
regressions, but can be tedious to write – and  
if you forgot an edge case writing the code,  
you probably forgot it writing the tests too!  
 
Formal methods are hard to scale to a concrete 
implementation – and while checking your 
design is a big advantage, you’ll still need tests! 
 
Generating tests fits well into your existing test 
suite and can often produce edge cases that 
you hadn’t considered – or thought possible. 
 

there are some cool tricks 
here, like checking that a 
trace from a test or prod 

logs is allowed by your 
formal model. 

…you do have tests, right? 

testing is much more fun 
when you’re not sure what 

will happen, and might 
even learn something! 

Fuzzing   
is the art and science of passing arbitrary 

inputs to programs, to see if they crash or 
hang.  Using sanitisers and assertions to 

crash on logic errors is even more useful! 
 

Fuzzers like American Fuzzy Lop are very 
effective –they find lots of vulnerabilities 

in important and widely used software! 

sanitisers insert runtime checks 
for bugs like undefined behaviour 
or memory errors which can’t 
happen in Python. 

http://lcamtuf.coredump.cx/afl/ 
Check out the general intro, then 
read more details or just admire 
the long, long  list of bugs. 

 

# Details at https://hypothesis.readthedocs.io 

from hypothesis import assume, given 

import hypothesis.strategies as st 

 

 

 

@given(st.lists(st.integers(), min_size=2)) 

def test_a_sort_function(ls): 

    out = dubious_sort(ls) 

    # we can compare to a trusted implementation, 

    assert out == sorted(ls) 

    # or check the properties we need directly. 

    assert Counter(out) == Counter(ls) 

    assert all(a <= b for a, b in zip(out, out[1:])) 

 

 

 

# A JSON value may be none, a bool, a number, a string; 

# a list of JSON values, or a string-to-JSON-value dict. 

@given(value = st.recursive( 

    st.none() | st.booleans() | st.floats() | st.text(), 

    lambda s: st.lists(s) | st.dictionaries(st.text(), s) 

)) 

def test_json_values_roundtrip(value): 

    assume(value == value) 

    assert value == json.loads(json.dumps(value)) 
 actual test output below  

Unpacking the code sample 
@given wraps your test function, and runs it many 
times with arguments drawn from the strategies. 
 
Strategies can be defined directly, combined, and 
composed with arbitrary code – or inferred from 
regular expressions, arbitrary type hints, and more.  
You can even draw more values within the test. 
 
When a test case raises an error, @given searches 
for a minimal input that causes the same error.   
This makes debugging as easy as possible! 

i.e. creates a target for our 
in-memory whitebox fuzzer 

optional  support for  
Django, Numpy, Pandas, pytz, 
dateutil, and EBNF grammars 

- plus third-party extensions 
from async tests to jsonschema 

Property-based testing 
is testing using fuzzable tests – so trying lots of 
different inputs can find problems that don’t 
necessarily crash. 
 
• does this multi-core algorithm always get the 

same answer as a slow and simple version? 
• given auto-formatted Python code, does 

running the formatter again change it? 
 
PBT was invented by QuickCheck, in Haskell,  
but recent tools are equally inspired by fuzzing. 
 
hypothesis.stateful can generate actions as 
easily as inputs – exploring test programs that 
no human would every try to write by hand. 

https://danluu.com/testing/ 
might change the way you think 
about testing code or hardware 

there are lots of definitions  
– we discuss this one at  

https://hypothesis.works/articles/
what-is-property-based-testing/ 

this is great  for web APIs, 
the SymPy algebra system, 
distributed schedulers, etc. 
Shrinking is indispensable! 

$ pytest example.py 

======================= FAILURES ======================== 

_________________ test_json_roundtrips __________________ 

Traceback (most recent call last): 

  ... 

AssertionError: assert [[nan]] == [[nan]] 

  At index 0 diff: [nan] != [nan] 

---------------------- Hypothesis ----------------------- 

Falsifying example: test_json_roundtrips(value=[[nan]]) 

================== 1 failed, 1 passed =================== 

value compares to 
itself by list identity, 

but to the deserialised 
list by element values! 

Hypothesis reports 
a minimal example 

of each bug it finds! 

 
 

Who else uses Hypothesis? 
4% of all Python users, CPython, PyPy, >200 

packages, >1700 repos; AWS, Google, Stripe, 
Ethereum, schoolteachers, … and you? 

 

Do my functions have to be pure? 
Nope!  So long as it does the same thing each 

time it’s passed the same arguments and 
cleans up after, your test can do anything. 

 
 

 

Isn’t random testing flaky? 
Every failing example is cached and retried , 
and we print the random seed too.  You can 
even commit the cache! 
 

How fast is Hypothesis? 
The overhead is small, but running your test 
function 100 times (by default) takes a while. 
 

What test runners can I use? 
Anything that calls functions - tested against 
unittest, nose, pytest, etc.  Async tests work 
with a shim. 


