Why generate tests?

Hand-written unit tests are good at catching
regressions, but can be tedious to write — and
if you forgot an edge case writing the code,
you probably forgot it writing the tests too!

Formal methods are hard to scale to a concrete
implementation — and while checking your
design is a big advantage, you’ll still need tests!

Generating tests fits well into your existing test
suite and can often produce edge cases that
you hadn’t considered — or thought possible.

Fuzzing

is the art and science of passing arbitrary
inputs to programs, to see if they crash or

hang. Using sanitisers and assertions to
crash on logic errors is even more useful!

Fuzzers like American Fuzzy Lop are very
effective —they find lots of vulnerabilities
in important and widely used software!

Escape from auto-manual testing!

Property-based testing

is testing using fuzzable tests — so trying lots of
different inputs can find problems that don’t
necessarily crash.

* does this multi-core algorithm always get the
same answer as a slow and simple version?

e given auto-formatted Python code, does
running the formatter again change it?

PBT was invented by QuickCheck, in Haskell,
but recent tools are equally inspired by fuzzing.

hypothesis.stateful can generate actions as
easily as inputs — exploring test programs that
no human would every try to write by hand.

Zac Hatfield-Dodds

Who else uses Hypothesis?

4% of all Python users, CPython, PyPy, >200
packages, >1700 repos; AWS, Google, Stripe,
Ethereum, schoolteachers, ... and you?

Do my functions have to be pure?
Nope! So long as it does the same thing each
time it’s passed the same arguments and
cleans up after, your test can do anything.

Hypothesis

Isn’t random testing flaky?

Every failing example is cached and retried ,
and we print the random seed too. You can
even commit the cache!

How fast is Hypothesis?
The overhead is small, but running your test

function 100 times (by default) takes a while.

What test runners can | use?
Anything that calls functions - tested against
unittest, nose, pytest, etc. Async tests work
with a shim.

Details at https://hypothesis.readthedocs.io
from hypothesis import assume, given
import hypothesis.strategies as st

@given(st.lists(st.integers(), min size=2))

def test a sort function(ls):
out = dubious sort(1ls)
we can compare to a trusted implementation,
assert out == sorted(ls)
or check the properties we need directly.
assert Counter(out) == Counter(ls)
assert all(a <= b for a, b in zip(out, out[1:]))

A JSON value may be none, a bool, a number, a string;
a list of JSON values, or a string-to-JSON-value dict.
@given(value = st.recursive(
st.none() | st.booleans() | st.floats() | st.text(),
lambda s: st.lists(s) | st.dictionaries(st.text(), s)
))
def test json values roundtrip(value):
assume(value == value)
assert value == json.loads(json.dumps(value))

Unpacking the code sample

@given wraps your test function, and runs it many
times with arguments drawn from the strategies.

Strategies can be defined directly, combined, and
composed with arbitrary code — or inferred from
regular expressions, arbitrary type hints, and more.
You can even draw more values within the test.

When a test case raises an error, @given searches
for a minimal input that causes the same error.
This makes debugging as easy as possible!

$ pytest example.py

======================= FAILURES ========================
test json roundtrips
Traceback (most recent call last):

AssertionError: assert [[nan]] == [[han]]
At index © diff: [nan] != [nan]
—————————————————————— Hypothesis --------------------—---

Falsifying example: test json roundtrips(value=[[nan]])
=== ====== 1 'FailEd, 1 passed === =—=—====

